QUANTUM FIELD THEORY

Tutorials (n'3)

- 1. Complex field.- Let us study the Hamiltonian of the free complex field.
 - (a) Show that the operators $\hat{a}_p^{(\dagger)}$ and $\hat{a}_p^{(\dagger)}$ satisfy the canonical commutation relations as well as $[\hat{a}_p^{(\dagger)}, \hat{a}_p^{(\dagger)}] = 0$, where the annihilation operator \hat{a}_p is associated to the anti-particle of 4-momentum p^{μ} .
 - (b) Express the Hamiltonian H in terms of the annihilation (creation) operators $\hat{a}_p^{(\dagger)}$ and $\hat{\tilde{a}}_p^{(\dagger)}$.
- 2. **Propagator.-** Demonstrate that the propagator for the complex field operator $\hat{\phi}(x^{\mu})$ obeys the property

$$iG(x^{\mu} - x'^{\mu}) = <0|\tau[\hat{\phi}(x^{\mu})\hat{\phi}^{\dagger}(x'^{\mu})]|0> = iG(x'^{\mu} - x^{\mu}),$$

where x^{μ} denotes the 4-coordinates and τ selects the time-ordering.

3. Evolution operator.- Check that the evolution operator

$$\hat{U}_0(t) = e^{-i\hat{H}_0 t}$$

 $(\hat{H}_0$ being the free Hamiltonian) for the free quantum state is unitary.

- 4. *Wick* **contraction.-** In this exercise we will relate the time-ordering, the normal-ordering and the *Wick* contraction.
 - (a) Demonstrate the commutation relation, $[\hat{\phi}(x^{\mu}), \hat{\phi}(x'^{\mu})] = 0$, among field operators involving identical time-components t = t'.
 - (b) Demonstrate the equality property, : $\hat{\phi}(x^{\mu})\hat{\phi}(x'^{\mu}) :=: \hat{\phi}(x'^{\mu})\hat{\phi}(x^{\mu}):$, where : $\hat{\phi}(x^{\mu})\hat{\phi}(x'^{\mu}):$ denotes the normal-ordering.
 - (c) Using previous question, show that the time-ordering between two fields is given by

$$\tau[\hat{\phi}_1(x^{\mu})\hat{\phi}_2(x'^{\mu})] = :\hat{\phi}_1(x^{\mu})\hat{\phi}_2(x'^{\mu}): +\hat{\phi}_1(x^{\mu})\hat{\phi}_2(x'^{\mu}),$$

where $\hat{\phi}_1(x^{\mu})\hat{\phi}_2(x'^{\mu})$ denotes the *Wick* contraction.